Sunday, September 16, 2012

Aryabhata



Aryabhata or Aryabhata I (476–550 CE) was the first in the line of great mathematician-astronomers from the classical age of Indian mathematics and Indian astronomy. His most famous works are the Āryabhaṭīya (499 CE, when he was 23 years old) and the Arya-siddhanta.
The works of Aryabhata dealt with mainly mathematics and astronomy. He also worked on the approximation for pi.

       

Time and Place of birth

Aryabhata mentions in the Aryabhatiya that it was composed 3,630 years into the Kali Yuga, when he was 23 years old. This corresponds to 499 CE, and implies that he was born in 476.
Aryabhata was born in Taregna (literally, song of the stars), which is a small town in Bihar, India, about 30 km (19 mi) from Patna (then known as Pataliputra), the capital city of Bihar State. Evidences justify his birth there. In Taregna Aryabhata set up an Astronomical Observatory in the Sun Temple 6th century.
There is no evidence that he was born outside Patliputra and traveled to Magadha, the centre of instruction, culture and knowledge for his studies where he even set up a coaching institute.[8]However, early Buddhist texts describe Ashmaka as being further south, in dakshinapath or the Deccan, while other texts describe the Ashmakas as having fought Alexander.

Education

It is fairly certain that, at some point, he went to Kusumapura for advanced studies and lived there for some time. Both Hindu and Buddhist tradition, as well as Bhāskara I (CE 629), identify Kusumapura as Pāṭaliputra, modern Patna. A verse mentions that Aryabhata was the head of an institution (kulapati) at Kusumapura, and, because the university of Nalanda was in Pataliputra at the time and had an astronomical observatory, it is speculated that Aryabhata might have been the head of the Nalanda university as well.Aryabhata is also reputed to have set up an observatory at the Sun temple in Taregana, Bihar.

Work in Astronomy

Aryabhata's system of astronomy was called the audAyaka system, in which days are reckoned from uday, dawn at lanka or "equator". Some of his later writings on astronomy, which apparently proposed a second model (or ardha-rAtrikA, midnight) are lost but can be partly reconstructed from the discussion in Brahmagupta's khanDakhAdyaka. In some texts, he seems to ascribe the apparent motions of the heavens to the Earth's rotation. He may have believed that the planet's orbits as elliptical rather than circular.

Motions of the solar system

Aryabhata correctly insisted that the earth rotates about its axis daily, and that the apparent movement of the stars is a relative motion caused by the rotation of the earth, contrary to the then-prevailing view in other parts of the world, that the sky rotated. This is indicated in the first chapter of the Aryabhatiya, where he gives the number of rotations of the earth in a yuga,[23] and made more explicit in his gola chapter:[24]
Eclipses
Solar and lunar eclipses were scientifically explained by Aryabhata. Aryabhata states that the Moon and planets shine by reflected sunlight. Instead of the prevailing cosmogony in which eclipses were caused by pseudo-planetary nodes Rahu and Ketu, he explains eclipses in terms of shadows cast by and falling on Earth. Thus, the lunar eclipse occurs when the moon enters into the Earth's shadow (verse gola.37). He discusses at length the size and extent of the Earth's shadow (verses gola.38–48) and then provides the computation and the size of the eclipsed part during an eclipse. Later Indian astronomers improved on the calculations, but Aryabhata's methods provided the core. His computational paradigm was so accurate that 18th century scientist Guillaume Le Gentil, during a visit to Pondicherry, India, found the Indian computations of the duration of the lunar eclipse of 30 August 1765 to be short by 41 seconds, whereas his charts (by Tobias Mayer, 1752) were long by 68 seconds.[8]

Sidereal periods

Considered in modern English units of time, Aryabhata calculated the sidereal rotation (the rotation of the earth referencing the fixed stars) as 23 hours, 56 minutes, and 4.1 seconds;[28] the modern value is 23:56:4.091. Similarly, his value for the length of the sidereal year at 365 days, 6 hours, 12 minutes, and 30 seconds (365.25858 days)[29] is an error of 3 minutes and 20 seconds over the length of a year (365.25636 days).[30]

Heliocentrism

As mentioned, Aryabhata advocated an astronomical model in which the Earth turns on its own axis. His model also gave corrections (the śīgra anomaly) for the speeds of the planets in the sky in terms of the mean speed of the sun. Thus, it has been suggested that Aryabhata's calculations were based on an underlying heliocentric model, in which the planets orbit the Sun,]though this has been rebutted. It has also been suggested that aspects of Aryabhata's system may have been derived from an earlier, likely pre-Ptolemaic Greek, heliocentric model of which Indian astronomers were unaware,[35] though the evidence is scant.[36] The general consensus is that a synodic anomaly (depending on the position of the sun) does not imply a physically heliocentric orbit (such corrections being also present in late Babylonian astronomical texts), and that Aryabhata's system was not explicitly heliocentric.

Source:Wiki




No comments: